MediaPipe是谷歌推出的一套构建计算机视觉和机器学习管道的框架,可以在移动设备上实时处理视频流。以下是使用MediaPipe的基本步骤:
- 安装依赖库
首先,需要在项目的build.gradle文件中添加MediaPipe的依赖项:
dependencies {
implementation 'com.google.mediapipe:mediapipe:<version>'
}
其中,是MediaPipe的版本号,可以在MediaPipe的官方文档中找到。
- 导入MediaPipe包
在代码中导入MediaPipe相关的包:
import com.google.mediapipe.framework.MediaPipe;
import com.google.mediapipe.framework.Pipeline;
import com.google.mediapipe.pipeline.Graph;
import com.google.mediapipe.pipeline.InputStream;
import com.google.mediapipe.pipeline.OutputStream;
import com.google.mediapipe.solution.FaceMesh;
import com.google.mediapipe.solution.PoseLandmark;
- 创建Graph对象
创建一个Graph对象,用于定义处理流程:
Graph graph = new Graph();
- 添加解耦模块
根据需要添加解耦模块,例如FaceMesh和PoseLandmark等:
// 添加FaceMesh模块
InputStream faceMeshInputStream = graph.addInputStream("input_video", InputStream.BufferFormat.RGB_24);
FaceMesh faceMesh = new FaceMesh(graph);
faceMesh.setOrientation(true);
faceMesh.setLandmarkMode(FaceMesh.LandmarkMode.ALL);
faceMesh.initialize();
// 添加PoseLandmark模块
InputStream poseLandmarkInputStream = graph.addInputStream("input_video", InputStream.BufferFormat.RGB_24);
PoseLandmark poseLandmark = new PoseLandmark(graph);
poseLandmark.setTrackingMode(PoseLandmark.TrackingMode.TRACKING);
poseLandmark.initialize();
- 运行Graph
将输入流与解耦模块连接,并运行Graph:
// 连接输入流和解耦模块
faceMesh.setInput(faceMeshInputStream);
poseLandmark.setInput(poseLandmarkInputStream);
// 运行Graph
graph.run();
- 获取输出数据
通过解耦模块的输出端口获取处理后的数据:
// 获取FaceMesh的输出数据
List<float[]> faceMeshVertices = faceMesh.getVertices();
// 获取PoseLandmark的输出数据
List<float[]> poseLandmarks = poseLandmark.getLandmarks();
以上是使用MediaPipe的基本步骤,具体使用时需要根据实际需求进行调整。