ReentrantLock的原理解析

2023-10-15,

重入锁(ReentrantLock)是一种可重入无阻塞的同步机制。性能同synchronized接近(老版本jdk中性能很差)。

下面重点看下常用的lock()和unlock()方法的实现原理

lock()

首先看下源代码:

    public void lock() {
sync.lock(); // 有公平同步和非公平同步两种机制
}

它的实现很简单,调用了一行sync的lock()方法,由于sync有两种实现方式:公平同步和非公平同步,默认是非公平同步,继续看代码:

final void lock() {
if (compareAndSetState(, )) // CAS机制,如果处于无锁状态,就直接锁定。lock锁中维护一个计数,大于0表示加锁了,值表示重入加锁次数
setExclusiveOwnerThread(Thread.currentThread()); // 设置锁被本线程持有,有什么用呢?用于可重入时检查使用
else    
acquire(); // 如果锁引用计数不是0,说明已经上锁,检查是否可以重入
}

继续看"acquire(1)"的实现:

    public final void acquire(int arg) {
if (!tryAcquire(arg) && // 判断是否可以重入,即持有锁的线程是否是当前线程,如果是就把锁引用计数加1,返回lock成功
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) // 否则尝试把自己挂起
selfInterrupt();
}
   // 再次尝试加锁
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
} final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState(); // 锁引用计数值
if (c == 0) { // 为0,说明没有锁了
if (compareAndSetState(0, acquires)) { // 尝试加锁
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) { // 持有锁的正是当前线程,那么就把锁引用计数加1,加锁成功
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}

上面看到tryAcquire中会再次尝试加锁,或者如果持有锁的是当前线程,则把锁引用计数加1,返回加锁成功。

否则执行addWaiter,看下代码:

private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail; // 增加一个等待node带队尾
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 前面使用CAS方式设置失败,则进入enq,循环使用CAS方式把Node加入队尾
enq(node);
return node;
}
  // 把node加入队尾
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 加入队尾后,再执行acquireQueued(即acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) { // 再次尝试加锁,防止有线程把锁释放了
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) && // 检查是否可以把自己挂起,会设置一个状态值
parkAndCheckInterrupt()) // 把自己挂起
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

上面的代码,重点看下这两个方法:

shouldParkAfterFailedAcquire
 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus; // 第一次进来 ws是0,是初始值
if (ws == Node.SIGNAL) // 是否已经设置为等待唤醒状态,如果是,就可以挂起了
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else { // 设置自己的状态为Node.SIGNAL,但本次不允许挂起。下次再进来的时候,就可以返回true,并可以挂起了
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
parkAndCheckInterrupt
     private final boolean parkAndCheckInterrupt() {
LockSupport.park(this); // 挂起自己
return Thread.interrupted();
}
再看下park的实现:
     public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker); // 设置要挂起的线程,和挂起使用的对象
unsafe.park(false, 0L); // 挂起,jdk内置的挂起方法
setBlocker(t, null); // 唤醒后,取消挂起的对象
}

再看下setBlocker:

     private static void setBlocker(Thread t, Object arg) {
// Even though volatile, hotspot doesn't need a write barrier here.
unsafe.putObject(t, parkBlockerOffset, arg);
} // 设置了阻塞线程和使用的阻塞对象
 
 

从上面代码可以看到,lock的主要流程有:

1. 检查锁引用计数,如果为0,表示可以锁定,就使用CAS方式把当前Thread对象设置为持有锁的对象,并把锁引用计数加1.

2. 检查锁引用计数,如果大于0,需要:

    i. 检查当前持有锁的线程对象是否和本线程是同一个,如果是就对锁引用计数加1,加锁成功,这里体现了"可重入"特性。

    ii. 否则,创建一个等待的node对象并加入到等待链接的队尾,然后调用系统的unsafe.park方法,把自己挂起。

 Unlock

unlock就比较简单了,下面看下代码:

    public void unlock() {
sync.release(1); // 解锁
} public final boolean release(int arg) {
if (tryRelease(arg)) { // 解锁
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h); // 解锁成功后,唤醒其他的等待线程
return true;
}
return false;
}

这里面重点有两个地方,一个解锁,另外一个唤醒其他等待的线程。

先看解锁:

 // 索引用计数减releases,实现了重入
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) { // 如果锁引用计数为0,说明是无锁状态了,需要把持有锁的线程变量置为空,并返回true
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

再看唤醒其他线程代码:

 // 当前面方法返回true,说明当前处于无锁状态了,这时候就可以唤醒其他的等待线程了
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0); /*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0) // 找到等待的线程
s = t;
}
if (s != null)
LockSupport.unpark(s.thread); // 唤醒线程
}

相对来说,unlock就简单许多了,两步:1.解锁,减引用计数。2.唤醒其他线程。

ReentrantLock的原理解析的相关教程结束。

《ReentrantLock的原理解析.doc》

下载本文的Word格式文档,以方便收藏与打印。